Package | Description |
---|---|
com.indeed.vw.wrapper.api |
This package contains OOP api for wowpal wabbit jni wrapper.
|
Modifier and Type | Method and Description |
---|---|
VowpalWabbit.Builder |
VowpalWabbit.Builder.active()
enable active learning
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.activeCover()
enable active learning with cover
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.adaptive()
use adaptive, individual learning rates.
|
static VowpalWabbit.Builder |
VowpalWabbit.advancedBuilder()
Create advanced builder for Vowpal Wabbit learner
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.affix(String arg)
generate prefixes/suffixes of features; argument '+2a,-3b,+1'
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.auditRegressor(Path regressor)
stores feature names and their regressor values.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.autolink(int d)
create link function with polynomial d
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.bfgs()
use bfgs optimization
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.binary()
report loss as binary classification on -1,1
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.bitPrecision(int bitsNum)
number of bits in the feature table.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.boosting(int n)
Online boosting with <N> weak learners
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.bootstrap(int k)
k-way bootstrap by online importance resampling
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.cache()
Use a cache.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.cacheFile(Path cacheFile)
The location(s) of cacheFile.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.cb(int k)
Use contextual bandit learning with <k> costs
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.cbAdf()
Do Contextual Bandit learning with multiline action dependent features.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.cbExplore(int k)
Online explore-exploit for a <k> action contextual bandit problem
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.cbExploreAdf()
Online explore-exploit for a contextual bandit problem with multiline action dependent features
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.cbify(int k)
Convert multiclass on <k> classes into a contextual bandit problem
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.compressed()
use gzip format whenever possible.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.confidence()
Get confidence for binary predictions
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.confidenceAfterTraining()
Confidence after training
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.conjugateGradient()
use conjugate gradient based optimization
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.constant(double initialValue)
Set initial value of constant
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.csoaa(int k)
One-against-all multiclass with <k> costs
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.csoaaLdf(VowpalWabbit.LDF ldf)
Use one-against-all multiclass learning with label dependent features.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.cubic(String firstNameSpace,
String secondNamespace,
String thirdNamespace)
Create and use cubic features
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.decayLearningRate(double decay)
Set Decay factor for learning_rate between passes
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.dictionary(Path file)
read a dictionary for additional features (arg either 'x:file' or just 'file')
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.dictionaryPath(Path dir)
look in this directory for dictionaries; defaults to current directory or env{PATH}
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.earlyTerminate(int passes)
Specify the number of passes tolerated when holdout loss doesn't decrease before early termination, default is 3
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.ect(int k)
Error correcting tournament with <k> labels
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.examples(int examples)
number of examples to parse
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.featureLimit(int n)
limit to N features.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.featureMask(Path featureMask)
Use existing regressor to determine which parameters may be updated.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.finalRegressor(Path regressor)
Final regressor
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.ftrl()
FTRL: Follow the Proximal Regularized Leader
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.hash(VowpalWabbit.Hash hash)
how to hash the features.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.holdoutAfter(int n)
holdout after n training examples, default off (disables holdoutPeriod)
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.holdoutPeriod(int holdout)
holdout period for test only, default 10
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.id(String id)
User supplied ID embedded into the final regressor
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.ignore(String namespace)
ignore namespace <arg>
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.initialPassLength(int examples)
initial number of examples per pass
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.initialRegressor(Path initialRegressor)
Initial regressor(s)
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.initialT(double initialT)
initial t value
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.initialWeight(double weight)
Set all weights to an initial value of arg.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.inputFeatureRegularizer(Path regularizationPath)
Per feature regularization input file
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.interact(String arg)
Put weights on feature products from namespaces <n1> and <n2>
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.interactions(String... namespaces)
Create feature interactions of any level between namespaces.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.invariant()
use safe/importance aware updates.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.keep(String namespace)
keep namespace <arg>
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.killCache()
do not reuse existing cache: create a new one always
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.ksvm()
kernel svm
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.l1(double l1)
l_1 lambda
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.l2(double l2)
l_2 lambda
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.lda(int topics)
Run lda with <int> topics
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.learningRate(double learningRate)
Set learning rate
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.leaveDuplicateInteractions()
Don't remove interactions with duplicate combinations of namespaces.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.link(Link link)
Specify the link function: identity, logistic, glf1 or poisson (=identity)
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.logMulti(int k)
Use online tree for multiclass
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.lossFunction(Loss loss)
Specify the loss function to be used, uses squared by default.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.lrq(String firstNamespace,
String secondNamespace,
int k)
use low rank quadratic features
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.lrqdropout()
use dropout training for low rank quadratic features
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.lrqfa(String firstNamespace,
String secondNamespace,
int k)
use low rank quadratic features with field aware weights
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.maxPrediction(double max)
Largest prediction to output
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.minPrediction(double min)
Smallest prediction to output
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.multilabelOaa(int k)
One-against-all multilabel with <k> labels
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.multiworldTest(String arg)
Evaluate features as a policies
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.namedLabels(String... labels)
use names for labels (multiclass, etc.) rather than integers, argument specified all possible labels, comma-sep,
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.newMf(int rank)
rank for reduction-based matrix factorization
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.ngram(String namespace,
int n)
Generate N grams.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.nn(int units)
Sigmoidal feedforward network with <k> hidden units
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.noconstant()
Don't add a constant feature
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.noop()
do no learning
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.normalized()
use per feature normalized updates
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.oaa(int k)
One-against-all multiclass with <k> labels
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.ojaNewton()
Online Newton with Oja's Sketch
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.outputFeatureRegularizerBinary(Path regularizationFile)
Per feature regularization output file
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.outputFeatureRegularizerText(Path regularizationFile)
Per feature regularization output file, in text
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.parameter(String argumentLine)
Add vowpal wabit argument
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.passes(int passes)
Number of Training Passes
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.permutations()
Use permutations instead of combinations for feature interactions of same namespace.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.pistol()
FTRL: Parameter-free Stochastic Learning
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.powerT(double powerT)
t power value
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.quadratic(String firstNameSpace,
String secondNamespace)
Create and use quadratic features
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.quantileTau(double tau)
Parameter \tau associated with Quantile loss.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.randomSeed(int seed)
seed random number generator
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.randomWeights(double arg)
make initial weights random
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.rank(int rank)
rank for matrix factorization.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.readableModel(Path model)
Output human-readable final regressor with numeric features
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.recallTree(int k)
Use online tree for multiclass
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.redefine(String newNamespace,
String... namespaces)
redefine namespaces beginning with characters of string S as namespace N.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.replayB(String arg)
use experience replay at a specified level
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.replayC(String arg)
use experience replay at a specified level
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.replayM(String arg)
use experience replay at a specified level
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.ringSize(int ringSize)
size of example ring buffer
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.savePerPass()
Save the model after every pass over data
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.saveResume()
save extra state so learning can be resumed later with new data
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.search(int maxActionID)
Use learning to search, argument=maximum action id or 0 for LDF
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.sgd()
use regular stochastic gradient descent update.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.skips(String namespace,
int n)
Generate skips in N grams.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.sortFeatures()
turn this on to disregard order in which features have been defined.
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.sparseL2(double l2)
use per feature normalized updates (=0)
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.spelling(String namespace)
compute spelling features for a give namespace (use '_' for default namespace)
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.stagePoly()
use stagewise polynomial feature learning
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.svrg()
Streaming Stochastic Variance Reduced Gradient
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.testonly()
Ignore label information and just test
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.top(int k)
top k recommendation
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.verbose()
Make vowpal wabbit writing debug and performance information to stderr
|
VowpalWabbit.Builder |
VowpalWabbit.Builder.wapLdf(VowpalWabbit.LDF ldf)
Use weighted all-pairs multiclass learning with label dependent features.
|
Copyright © 2017. All rights reserved.