Package | Description |
---|---|
com.indeed.vw.wrapper.api |
This package contains OOP api for wowpal wabbit jni wrapper.
|
com.indeed.vw.wrapper.api.parameters |
API for creating vowpal wabbit parameters string.
|
Modifier and Type | Class and Description |
---|---|
static class |
VowpalWabbit.Builder
Builder for Vowpal Wabbit learner.
|
Modifier and Type | Method and Description |
---|---|
static SGDVowpalWabbitBuilder |
VowpalWabbit.builder()
Create builder for Vowpal Wabbit learner
|
Modifier and Type | Method and Description |
---|---|
SGDVowpalWabbitBuilder |
UpdatesOptions.adaptive()
use adaptive, individual learning rates.
|
SGDVowpalWabbitBuilder |
OptionToExchangeRAMForQuality.bitPrecision(int bitsNum)
number of bits in the feature table.
|
SGDVowpalWabbitBuilder |
FeatureEngineeringFunctions.constant(double initialValue)
Set initial value of constant
|
SGDVowpalWabbitBuilder |
FeatureEngineeringFunctions.cubic(String firstNameSpace,
String secondNamespace,
String thirdNamespace)
Create and use cubic features
|
SGDVowpalWabbitBuilder |
FeatureSelectionOptions.featureMask(Path featureMask)
Use existing regressor to determine which parameters may be updated.
|
SGDVowpalWabbitBuilder |
OptionsToSaveAndLoadModel.finalRegressor(Path regressor)
Final regressor
|
SGDVowpalWabbitBuilder |
FeatureSelectionOptions.ftrl()
FTRL: Follow the Proximal Regularized Leader
|
SGDVowpalWabbitBuilder |
OptionsToSaveAndLoadModel.initialRegressor(Path initialRegressor)
Initial regressor(s)
|
SGDVowpalWabbitBuilder |
UpdatesOptions.invariant()
use safe/importance aware updates.
|
SGDVowpalWabbitBuilder |
RegularizationOptions.l1(double l1)
l_1 lambda
|
SGDVowpalWabbitBuilder |
RegularizationOptions.l2(double l2)
l_2 lambda
|
SGDVowpalWabbitBuilder |
UpdatesOptions.learningRate(double learningRate)
Set learning rate
|
SGDVowpalWabbitBuilder |
LinkAndLossOptions.link(Link link)
Specify the link function: identity, logistic, glf1 or poisson (=identity)
|
SGDVowpalWabbitBuilder |
LinkAndLossOptions.lossFunction(Loss loss)
Specify the loss function to be used, uses squared by default.
|
SGDVowpalWabbitBuilder |
FeatureEngineeringFunctions.lrqfa(String firstNamespace,
String secondNamespace,
int k)
use low rank quadratic feature-aware weights
|
SGDVowpalWabbitBuilder |
PredictionBoundaryOptions.maxPrediction(double max)
Largest prediction to output
|
SGDVowpalWabbitBuilder |
PredictionBoundaryOptions.minPrediction(double min)
Smallest prediction to output
|
SGDVowpalWabbitBuilder |
FeatureEngineeringFunctions.ngram(String namespace,
int n)
Generate N grams.
|
SGDVowpalWabbitBuilder |
FeatureEngineeringFunctions.noconstant()
Don't add a constant feature
|
SGDVowpalWabbitBuilder |
UpdatesOptions.normalized()
use per feature normalized updates
|
SGDVowpalWabbitBuilder |
FeatureEngineeringFunctions.quadratic(String firstNameSpace,
String secondNamespace)
Create and use quadratic features
|
SGDVowpalWabbitBuilder |
LinkAndLossOptions.quantileTau(double tau)
Parameter \tau associated with Quantile loss.
|
SGDVowpalWabbitBuilder |
MiscOptions.randomSeed(int seed)
Seed random number generator
|
SGDVowpalWabbitBuilder |
DebuggingOptions.readableModel(Path model)
Output human-readable final regressor with numeric features
|
SGDVowpalWabbitBuilder |
UpdatesOptions.sgd()
use regular stochastic gradient descent update.
|
SGDVowpalWabbitBuilder |
FeatureEngineeringFunctions.skips(String namespace,
int n)
Generate skips in N grams.
|
SGDVowpalWabbitBuilder |
MiscOptions.testonly()
Ignore label information and just test
|
SGDVowpalWabbitBuilder |
DebuggingOptions.verbose()
Make vowpal wabbit writing debug and performance information to stderr
|
Copyright © 2017. All rights reserved.